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Functional Analysis

1. Let X be a complex normed linear space. Let f : X — C be a non-zero linear map.
Show that either f(B(0,1)) is a bounded set or all of C. In the second case show
that ker f is dense in X.

Proof. 1f f is continuous, then |f(z)| < || f||||z|| for all z € X. For z € B(0, 1), i.e.,
llz|| < 1, we have [f(x)| < [|fllll=]l < ||f|| for = € B(0,1). Hence f(B(0,1)) is a
bounded set.

Now we show that if f is not continuous, then f(B(0,1)) = C. Since f : X — C is

not continuous, f is not bounded for B(0;1) = {z € X : ||z|| < 2} for each n € N.

So there exists x,, € B(0; ) such that |f(x,)| > n for each n € N. Take any a € C.

There is some natural number k such that |a| < k. Since |f(zg)| > k, ‘_f(ik)‘ <1, s0
_f(gk)xk is inside open unit ball B(0,1). But f(%xk) = f(gk)f(xk) = a, 80 a is in

the image of the open unit ball under f.

Our next claim is to show that if f(B(0,1)) = C, then ker f is dense in X. Clearly
f(B(0,1)) = C implies f is not continuous. Since f : X — C is not continuous,
f is not bounded for B(0;1) = {z € X : |[z|| < i} for each n € N. So there
exists x, € B(0;1) such that |f(z,)| > n for ecach n € N. Note that z, — 0 and

()
T,
using the linearity of f we can see that y,, € ker f for each n € N. Since z,, = 0 and

|f(z,)] = 00 as n — co. Let © € X. Define y,, = x — x,, for each n € N. Then

|f(z,)| = 00 as n — 00, Yy, — = as n — 00. Therefore x € ker f and which implies
ker f = X. Hence ker f is a dense subspace of X. O]

2. Show that for any normed linear space X, X* is a Banach space.

Proof. First we prove that if Y is a Banach space, then BL(X,Y") is a Banach space.
Let {F,} be a Cauchy sequence in BL(X,Y). For given € > 0, there is an N € N
such that

[En(@ = Fo(@)|| < [ Fn = Fnllllz]] < efl]] (1)
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for all x € X and all n,m > N. Thus {F,(x)} is a Cauchy sequence in Y for each
x € X. Since Y is Banach space, {F,,(x)} converges in Y, namely to y,. Define a
map F: X =Y by

F(x) =y, = lim F,(z)

n—oo
for v € X. Clearly F' is a linear map. Since {F,} is a Cauchy sequence, {F,} is
a bounded sequence. Assume that ||F,|| < M for some M > 0, for all n. Then
|F(z)|| < Mz for all z € X. Thus F' € BL(X,Y). Now taking m — oo and

supremum over all z € X with |lz|| <1 in equation (1), we have
[Fn = F| <€

for all n > N. Thus F,, — F in BL(X,Y). Hence BL(X,Y) is a Banach space. In
particular, for Y = C we have B(X,Y) = B(X,C) = X* = dual of X is a Banach
space. O

3. Let M = {f € C[0,1] : f|[07%] = 0}. Let @ : C[0,1]/M — C10,3] be defined by
O(f + M) = flpp, 1). Show that & is a well-defined, linear, onto, isometry.

Proof. Let us consider X = C[0,1] and Y = C[0, 3].

Well-defined /Linear: Let f,g € X be such that f + M = g+ M. Then f — g € M.
Thus (f — 9)|[o,%] = (. Hence f|[o,%] = g|[0’%]. So @ is well-defined. Clearly @ is linear.

Onto: Let g € Y. If we define

g(t) if0<t<i,
f(t) = )
g(1—1t) if3<t<1,

then f € X and ®(f + M) = [ 1) = g. Hence @ is onto.

Isometry: We recall the definition of the quotient norm ||f + M|| = inf{||f — ¢/« :
g€ M}. Let f € X. Since 9|[0,§] = 0 for any g € M, we have ||f — g|oc > ||f|[07%]||oo.
Thus |1 + M| = {1/ — gl - 9 € M} > [[fl 1o Define

0 if
f) = f(z) if 3

o
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Then go € M. Note that ||f — gol|c = sup{|f(t)| : t € [0,3]} = ”f’[O,%]HOO' Since
go € M, |[f + M| < |If = golloo = [lf]o, lloc- Thus [|f + M| = || fljp,1)llcc- Hence @

is an isometry. O

4. Let X be a normed linear space and M a proper closed subspace. Let 7 : X — X/M
be the quotient map. Show that ||| = 1.

Proof. Observe that ||7(x)| = |Jz+ M| < ||z]| for all z € X. So ||| < 1. For reverse

inequality we use the F. Riesz’s Lemma:

Let M be a proper, closed subspace of a normed space X. Then for given € > 0,there
exists © € X with ||z|| = 1, such that

|z + M| >1—e
So for each n € N, there exists x,, € X with ||z,| = 1, such that
1
|len + M| >1——.
n

Therefore |7 (x,)|| > 1 — %. Since ||2,|| = 1 for each n € N, we have ||x|| > 1. Hence
=] = 1. O

5. Let H be a complex separable Hilbert space. Show that for some discrete set A, there

is a linear, continuous, onto map from H — (?(A).

Proof. Since H is a complex separable Hilbert space, H has a countable orthonormal

basis say {u,us,...}. For x € H,

F(z) = ((z,u), (z,u9),...)

If {uy,us,...} is a finite set having n elements, then F is a linear map from H
to C* = (*({1,2,...,n}). If {uj,ug,...} is a countable infinite set, then Bessel’s
inequality shows that F' is a linear map from H to ¢*(N). If we consider the norm ||. ||
on ¢*(N), then the Parseval formula (for each z € H we have ||z|* = >, [(z,u,)[?)
shows that

Izl =D [z, wa) P = | F(2)]l5-
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for each € H. Hence F is an isometry. Let y € (*(N). Then y = > kne, =
(k1,ka,...) for k, € C where {e, : n = 1,2,...} is the standard orthonormal basis
of /2(N). Note that |ly||3 = Y, |ka|> < co. By Riesz-Fischer Theorem, Y kyu,
converges in H, say, it converges to x € H, i.e., x = Zn knuy,. Since {up,us, ...} is
an orthonormal basis of H, (x,u;,) = ky,. Then F(x) = y. Hence F is a surjective

map. O

6. Let H be a complex Hilbert space. Let P: H — H be a linear map such that

1. P#0Oand P#1,
2. P(P(z)) = P(x) for all z,

3. P@)|* + llz = P(x)[|* = [|l=[|* for all =

Show that ||P|| =1 = ||I — P||, where I denotes the identity map.

Proof. Note that P2 = P = ||P| = ||P?|| < ||P||||P|l = 1 < ||P|. Since |P(x)| +
lz = P(2)[|* = [l]|* for all z, [|P(z)||* < [l[|* = || P[] < 1. So | P[] = 1.

Observe that (I — P)2=1— P — P+ P? =] — P. In the above arguments, if we
change the role of P by I — P, then || — P|| = 1. O

7. Let (Q, A, P) be a probability space. Let {f,},>1 C L3(P) be a sequence such that
fo — f for some f € L3(P). Show that for any g € L2 (P), [ fag dP — [ fg dP.

Proof. Let us consider p = 3 and ¢ = % Then }—17 + % = 1. By using the Holder’s
inequality, for any g € L%(P) we have

[t =D dpi< [ 100~ nal P < ([ 15 =57 aP)P( [ 1ol ap)? o0

as n — oo. Hence for anygEL%(P),ffng dP — [ fg dP as n — oo. O

8. Let (X,7) be a locally compact non-compact space. Show that Cy(X) is a Banach

space with the supremum norm.
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Proof. If we can show that C(X) is a closed subspace of the complete space (C(X), ||.||),
then Cy(X) is also a Banach space with the supremum norm. Let f be any element

in the closure of Cy(X) in C(X). Then there is a sequence {f,} in Co(X) such
that || f, — fllco = 0 as n — oo. So for given ¢ > 0 there is an N € N such that

| fn — flloo < €forall n > N. Since fx € Cy(X), there is a compact subset K C X
such that |fy(t)| < € for all ¢t ¢ K. Hence

FOI<1f@) = fn@] + IO < 1 fv = fllo + [ (@) <et€

for all ¢ ¢ K. This shows that f € Cy(X). Thus Cy(X) is a closed subspace of C'(X).
So it is complete. O



