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Functional Analysis

1. Let X be a complex normed linear space. Let f : X → C be a non-zero linear map.

Show that either f(B(0, 1)) is a bounded set or all of C. In the second case show

that ker f is dense in X.

Proof. If f is continuous, then |f(x)| ≤ ‖f‖‖x‖ for all x ∈ X. For x ∈ B(0, 1), i.e.,

‖x‖ < 1, we have |f(x)| ≤ ‖f‖‖x‖ < ‖f‖ for x ∈ B(0, 1). Hence f(B(0, 1)) is a

bounded set.

Now we show that if f is not continuous, then f(B(0, 1)) = C. Since f : X → C is

not continuous, f is not bounded for B(0; 1
n
) = {x ∈ X : ‖x‖ < 1

n
} for each n ∈ N.

So there exists xn ∈ B(0; 1
n
) such that |f(xn)| > n for each n ∈ N. Take any α ∈ C.

There is some natural number k such that |α| < k. Since |f(xk)| > k, | α
f(xk)
| < 1, so

α
f(xk)

xk is inside open unit ball B(0, 1). But f( α
f(xk)

xk) = α
f(xk)

f(xk) = α, so α is in

the image of the open unit ball under f .

Our next claim is to show that if f(B(0, 1)) = C, then ker f is dense in X. Clearly

f(B(0, 1)) = C implies f is not continuous. Since f : X → C is not continuous,

f is not bounded for B(0; 1
n
) = {x ∈ X : ‖x‖ < 1

n
} for each n ∈ N. So there

exists xn ∈ B(0; 1
n
) such that |f(xn)| > n for each n ∈ N. Note that xn → 0 and

|f(xn)| → ∞ as n→∞. Let x ∈ X. Define yn = x− f(x)

f(xn)
xn for each n ∈ N. Then

using the linearity of f we can see that yn ∈ ker f for each n ∈ N. Since xn → 0 and

|f(xn)| → ∞ as n → ∞, yn → x as n → ∞. Therefore x ∈ ker f and which implies

ker f = X. Hence ker f is a dense subspace of X.

2. Show that for any normed linear space X, X∗ is a Banach space.

Proof. First we prove that if Y is a Banach space, then BL(X, Y ) is a Banach space.

Let {Fn} be a Cauchy sequence in BL(X, Y ). For given ε > 0, there is an N ∈ N
such that

‖Fn(x− Fm(x)‖ ≤ ‖Fn − Fm‖‖x‖ < ε‖x‖ (1)
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for all x ∈ X and all n,m ≥ N . Thus {Fn(x)} is a Cauchy sequence in Y for each

x ∈ X. Since Y is Banach space, {Fn(x)} converges in Y , namely to yx. Define a

map F : X → Y by

F (x) = yx = lim
n→∞

Fn(x)

for x ∈ X. Clearly F is a linear map. Since {Fn} is a Cauchy sequence, {Fn} is

a bounded sequence. Assume that ‖Fn‖ ≤ M for some M > 0, for all n. Then

‖F (x)‖ ≤ Mx for all x ∈ X. Thus F ∈ BL(X, Y ). Now taking m → ∞ and

supremum over all x ∈ X with ‖x‖ ≤ 1 in equation (1), we have

‖Fn − F‖ ≤ ε

for all n ≥ N . Thus Fn → F in BL(X, Y ). Hence BL(X, Y ) is a Banach space. In

particular, for Y = C we have B(X, Y ) = B(X,C) = X∗ = dual of X is a Banach

space.

3. Let M = {f ∈ C[0, 1] : f |[0, 1
2
] = 0}. Let Φ : C[0, 1]/M → C[0, 1

2
] be defined by

Φ(f +M) = f |[0, 1
2
]. Show that Φ is a well-defined, linear, onto, isometry.

Proof. Let us consider X = C[0, 1] and Y = C[0, 1
2
].

Well-defined/Linear: Let f, g ∈ X be such that f + M = g + M . Then f − g ∈ M .

Thus (f − g)|[0, 1
2
] = 0. Hence f |[0, 1

2
] = g|[0, 1

2
]. So Φ is well-defined. Clearly Φ is linear.

Onto: Let g ∈ Y . If we define

f(t) :=

g(t) if 0 ≤ t ≤ 1
2
;

g(1− t) if 1
2
≤ t ≤ 1,

then f ∈ X and Φ(f +M) = f |[0, 1
2
] = g. Hence Φ is onto.

Isometry: We recall the definition of the quotient norm ‖f + M‖ = inf{‖f − g‖∞ :

g ∈M}. Let f ∈ X. Since g|[0, 1
2
] = 0 for any g ∈M , we have ‖f − g‖∞ ≥ ‖f |[0, 1

2
]‖∞.

Thus ‖f +M‖ = inf{‖f − g‖∞ : g ∈M} ≥ ‖f |[0, 1
2
]‖∞. Define

g0(t) :=

0 if 0 ≤ t ≤ 1
2
;

f(t)− f(1
2
) if 1

2
≤ t ≤ 1,
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Then g0 ∈ M . Note that ‖f − g0‖∞ = sup{|f(t)| : t ∈ [0, 1
2
]} = ‖f |[0, 1

2
]‖∞. Since

g0 ∈ M , ‖f + M‖ ≤ ‖f − g0‖∞ = ‖f |[0, 1
2
]‖∞. Thus ‖f + M‖ = ‖f |[0, 1

2
]‖∞. Hence Φ

is an isometry.

4. Let X be a normed linear space and M a proper closed subspace. Let π : X → X/M

be the quotient map. Show that ‖π‖ = 1.

Proof. Observe that ‖π(x)‖ = ‖x+M‖ ≤ ‖x‖ for all x ∈ X. So ‖π‖ ≤ 1. For reverse

inequality we use the F. Riesz’s Lemma:

Let M be a proper, closed subspace of a normed space X. Then for given ε > 0,there

exists x ∈ X with ‖x‖ = 1, such that

‖x+M‖ > 1− ε.

So for each n ∈ N, there exists xn ∈ X with ‖xn‖ = 1, such that

‖xn +M‖ > 1− 1

n
.

Therefore ‖π(xn)‖ > 1− 1
n
. Since ‖xn‖ = 1 for each n ∈ N, we have ‖π‖ ≥ 1. Hence

‖π‖ = 1.

5. Let H be a complex separable Hilbert space. Show that for some discrete set ∆, there

is a linear, continuous, onto map from H → `2(∆).

Proof. Since H is a complex separable Hilbert space, H has a countable orthonormal

basis say {u1, u2, . . .}. For x ∈ H,

F (x) = (〈x, u1〉, 〈x, u2〉, . . .)

If {u1, u2, . . .} is a finite set having n elements, then F is a linear map from H

to Cn = `2({1, 2, . . . , n}). If {u1, u2, . . .} is a countable infinite set, then Bessel’s

inequality shows that F is a linear map from H to `2(N). If we consider the norm ‖.‖2
on `2(N), then the Parseval formula (for each x ∈ H we have ‖x‖2 =

∑
n |〈x, un〉|2)

shows that

‖x‖2 =
∑
n

|〈x, un〉|2 = ‖F (x)‖22.
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for each x ∈ H. Hence F is an isometry. Let y ∈ `2(N). Then y =
∑

n knen =

(k1, k2, . . .) for kn ∈ C where {en : n = 1, 2, . . .} is the standard orthonormal basis

of `2(N). Note that ‖y‖22 =
∑

n |kn|2 < ∞. By Riesz-Fischer Theorem,
∑

n knun

converges in H, say, it converges to x ∈ H, i.e., x =
∑

n knun. Since {u1, u2, . . .} is

an orthonormal basis of H, 〈x, um〉 = km. Then F (x) = y. Hence F is a surjective

map.

6. Let H be a complex Hilbert space. Let P : H → H be a linear map such that

1. P 6= 0 and P 6= I,

2. P (P (x)) = P (x) for all x,

3. ‖P (x)‖2 + ‖x− P (x)‖2 = ‖x‖2 for all x.

Show that ‖P‖ = 1 = ‖I − P‖, where I denotes the identity map.

Proof. Note that P 2 = P ⇒ ‖P‖ = ‖P 2‖ ≤ ‖P‖‖P‖ ⇒ 1 ≤ ‖P‖. Since ‖P (x)‖2 +

‖x− P (x)‖2 = ‖x‖2 for all x, ‖P (x)‖2 ≤ ‖x‖2 ⇒ ‖P‖ ≤ 1. So ‖P‖ = 1.

Observe that (I − P )2 = I − P − P + P 2 = I − P . In the above arguments, if we

change the role of P by I − P , then ‖I − P‖ = 1.

7. Let (Ω,A, P ) be a probability space. Let {fn}n≥1 ⊂ L3(P ) be a sequence such that

fn → f for some f ∈ L3(P ). Show that for any g ∈ L 3
2 (P ),

∫
fng dP →

∫
fg dP.

Proof. Let us consider p = 3 and q = 3
2
. Then 1

p
+ 1

q
= 1. By using the Holder’s

inequality, for any g ∈ L 3
2 (P ) we have

|
∫

(fn − f)g dP | ≤
∫
|(fn − f)g| dP ≤

( ∫
|fn − f |p dP

) 1
p
( ∫
|g|q dP

) 1
q → 0

as n→∞. Hence for any g ∈ L 3
2 (P ),

∫
fng dP →

∫
fg dP as n→∞.

8. Let (X, T ) be a locally compact non-compact space. Show that C0(X) is a Banach

space with the supremum norm.
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Proof. If we can show that C0(X) is a closed subspace of the complete space (C(X), ‖.‖∞),

then C0(X) is also a Banach space with the supremum norm. Let f be any element

in the closure of C0(X) in C(X). Then there is a sequence {fn} in C0(X) such

that ‖fn − f‖∞ → 0 as n → ∞. So for given ε > 0 there is an N ∈ N such that

‖fn − f‖∞ < ε for all n ≥ N . Since fN ∈ C0(X), there is a compact subset K ⊂ X

such that |fN(t)| < ε for all t /∈ K. Hence

|f(t)| ≤ |f(t)− fN(t)|+ |fN(t)| ≤ ‖fN − f‖∞ + |fN(t)| < ε+ ε

for all t /∈ K. This shows that f ∈ C0(X). Thus C0(X) is a closed subspace of C(X).

So it is complete.
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