Indian Statistical Institute, Bangalore Centre Solution set of M. Math Mid-Sem Examination 2010 Functional Analysis

1. Let X be a complex normed linear space. Let $f : X \to \mathbb{C}$ be a non-zero linear map. Show that either f(B(0,1)) is a bounded set or all of \mathbb{C} . In the second case show that ker f is dense in X.

Proof. If f is continuous, then $|f(x)| \le ||f|| ||x||$ for all $x \in X$. For $x \in B(0, 1)$, i.e., ||x|| < 1, we have $|f(x)| \le ||f|| ||x|| < ||f||$ for $x \in B(0, 1)$. Hence f(B(0, 1)) is a bounded set.

Now we show that if f is not continuous, then $f(B(0,1)) = \mathbb{C}$. Since $f: X \to \mathbb{C}$ is not continuous, f is not bounded for $B(0; \frac{1}{n}) = \{x \in X : ||x|| < \frac{1}{n}\}$ for each $n \in \mathbb{N}$. So there exists $x_n \in B(0; \frac{1}{n})$ such that $|f(x_n)| > n$ for each $n \in \mathbb{N}$. Take any $\alpha \in \mathbb{C}$. There is some natural number k such that $|\alpha| < k$. Since $|f(x_k)| > k, |\frac{\alpha}{f(x_k)}| < 1$, so $\frac{\alpha}{f(x_k)}x_k$ is inside open unit ball B(0, 1). But $f(\frac{\alpha}{f(x_k)}x_k) = \frac{\alpha}{f(x_k)}f(x_k) = \alpha$, so α is in the image of the open unit ball under f.

Our next claim is to show that if $f(B(0,1)) = \mathbb{C}$, then ker f is dense in X. Clearly $f(B(0,1)) = \mathbb{C}$ implies f is not continuous. Since $f : X \to \mathbb{C}$ is not continuous, f is not bounded for $B(0; \frac{1}{n}) = \{x \in X : ||x|| < \frac{1}{n}\}$ for each $n \in \mathbb{N}$. So there exists $x_n \in B(0; \frac{1}{n})$ such that $|f(x_n)| > n$ for each $n \in \mathbb{N}$. Note that $x_n \to 0$ and $|f(x_n)| \to \infty$ as $n \to \infty$. Let $x \in X$. Define $y_n = x - \frac{f(x)}{f(x_n)}x_n$ for each $n \in \mathbb{N}$. Then using the linearity of f we can see that $y_n \in \ker f$ for each $n \in \mathbb{N}$. Since $x_n \to 0$ and $|f(x_n)| \to \infty$ as $n \to \infty$, $y_n \to x$ as $n \to \infty$. Therefore $x \in \ker f$ and which implies $\ker f = X$. Hence ker f is a dense subspace of X.

2. Show that for any normed linear space X, X^* is a Banach space.

Proof. First we prove that if Y is a Banach space, then BL(X, Y) is a Banach space. Let $\{F_n\}$ be a Cauchy sequence in BL(X, Y). For given $\epsilon > 0$, there is an $N \in \mathbb{N}$ such that

$$||F_n(x - F_m(x)|| \le ||F_n - F_m|| ||x|| < \epsilon ||x||$$
(1)

Kalpesh Haria

for all $x \in X$ and all $n, m \geq N$. Thus $\{F_n(x)\}$ is a Cauchy sequence in Y for each $x \in X$. Since Y is Banach space, $\{F_n(x)\}$ converges in Y, namely to y_x . Define a map $F: X \to Y$ by

$$F(x) = y_x = \lim_{n \to \infty} F_n(x)$$

for $x \in X$. Clearly F is a linear map. Since $\{F_n\}$ is a Cauchy sequence, $\{F_n\}$ is a bounded sequence. Assume that $||F_n|| \leq M$ for some M > 0, for all n. Then $||F(x)|| \leq Mx$ for all $x \in X$. Thus $F \in BL(X,Y)$. Now taking $m \to \infty$ and supremum over all $x \in X$ with $||x|| \leq 1$ in equation (1), we have

$$\|F_n - F\| \le \epsilon$$

for all $n \geq N$. Thus $F_n \to F$ in BL(X, Y). Hence BL(X, Y) is a Banach space. In particular, for $Y = \mathbb{C}$ we have $B(X, Y) = B(X, \mathbb{C}) = X^* =$ dual of X is a Banach space.

3. Let $M = \{f \in C[0,1] : f|_{[0,\frac{1}{2}]} = 0\}$. Let $\Phi : C[0,1]/M \to C[0,\frac{1}{2}]$ be defined by $\Phi(f+M) = f|_{[0,\frac{1}{2}]}$. Show that Φ is a well-defined, linear, onto, isometry.

Proof. Let us consider X = C[0, 1] and $Y = C[0, \frac{1}{2}]$.

Well-defined/Linear: Let $f, g \in X$ be such that f + M = g + M. Then $f - g \in M$. Thus $(f - g)|_{[0,\frac{1}{2}]} = 0$. Hence $f|_{[0,\frac{1}{2}]} = g|_{[0,\frac{1}{2}]}$. So Φ is well-defined. Clearly Φ is linear. Onto: Let $g \in Y$. If we define

$$f(t) := \begin{cases} g(t) & \text{if } 0 \le t \le \frac{1}{2}; \\ g(1-t) & \text{if } \frac{1}{2} \le t \le 1, \end{cases}$$

then $f \in X$ and $\Phi(f + M) = f|_{[0,\frac{1}{2}]} = g$. Hence Φ is onto.

Isometry: We recall the definition of the quotient norm $||f + M|| = \inf\{||f - g||_{\infty} : g \in M\}$. Let $f \in X$. Since $g|_{[0,\frac{1}{2}]} = 0$ for any $g \in M$, we have $||f - g||_{\infty} \ge ||f|_{[0,\frac{1}{2}]}||_{\infty}$. Thus $||f + M|| = \inf\{||f - g||_{\infty} : g \in M\} \ge ||f|_{[0,\frac{1}{2}]}||_{\infty}$. Define

$$g_0(t) := \begin{cases} 0 & \text{if } 0 \le t \le \frac{1}{2}; \\ f(t) - f(\frac{1}{2}) & \text{if } \frac{1}{2} \le t \le 1, \end{cases}$$

Kalpesh Haria

Then $g_0 \in M$. Note that $||f - g_0||_{\infty} = \sup\{|f(t)| : t \in [0, \frac{1}{2}]\} = ||f|_{[0, \frac{1}{2}]}||_{\infty}$. Since $g_0 \in M$, $||f + M|| \le ||f - g_0||_{\infty} = ||f|_{[0, \frac{1}{2}]}||_{\infty}$. Thus $||f + M|| = ||f|_{[0, \frac{1}{2}]}||_{\infty}$. Hence Φ is an isometry.

4. Let X be a normed linear space and M a proper closed subspace. Let $\pi : X \to X/M$ be the quotient map. Show that $\|\pi\| = 1$.

Proof. Observe that $||\pi(x)|| = ||x + M|| \le ||x||$ for all $x \in X$. So $||\pi|| \le 1$. For reverse inequality we use the F. Riesz's Lemma:

Let M be a proper, closed subspace of a normed space X. Then for given $\epsilon > 0$, there exists $x \in X$ with ||x|| = 1, such that

$$\|x+M\| > 1-\epsilon.$$

So for each $n \in \mathbb{N}$, there exists $x_n \in X$ with $||x_n|| = 1$, such that

$$||x_n + M|| > 1 - \frac{1}{n}$$

Therefore $\|\pi(x_n)\| > 1 - \frac{1}{n}$. Since $\|x_n\| = 1$ for each $n \in \mathbb{N}$, we have $\|\pi\| \ge 1$. Hence $\|\pi\| = 1$.

5. Let H be a complex separable Hilbert space. Show that for some discrete set Δ , there is a linear, continuous, onto map from $H \to \ell^2(\Delta)$.

Proof. Since H is a complex separable Hilbert space, H has a countable orthonormal basis say $\{u_1, u_2, \ldots\}$. For $x \in H$,

$$F(x) = (\langle x, u_1 \rangle, \langle x, u_2 \rangle, \ldots)$$

If $\{u_1, u_2, \ldots\}$ is a finite set having *n* elements, then *F* is a linear map from H to $\mathbb{C}^n = \ell^2(\{1, 2, \ldots, n\})$. If $\{u_1, u_2, \ldots\}$ is a countable infinite set, then Bessel's inequality shows that *F* is a linear map from *H* to $\ell^2(\mathbb{N})$. If we consider the norm $\|.\|_2$ on $\ell^2(\mathbb{N})$, then the Parseval formula (for each $x \in H$ we have $\|x\|^2 = \sum_n |\langle x, u_n \rangle|^2$) shows that

$$||x||^2 = \sum_n |\langle x, u_n \rangle|^2 = ||F(x)||_2^2.$$

Kalpesh Haria

for each $x \in H$. Hence F is an isometry. Let $y \in \ell^2(\mathbb{N})$. Then $y = \sum_n k_n e_n = (k_1, k_2, \ldots)$ for $k_n \in \mathbb{C}$ where $\{e_n : n = 1, 2, \ldots\}$ is the standard orthonormal basis of $\ell^2(\mathbb{N})$. Note that $||y||_2^2 = \sum_n |k_n|^2 < \infty$. By Riesz-Fischer Theorem, $\sum_n k_n u_n$ converges in H, say, it converges to $x \in H$, i.e., $x = \sum_n k_n u_n$. Since $\{u_1, u_2, \ldots\}$ is an orthonormal basis of H, $\langle x, u_m \rangle = k_m$. Then F(x) = y. Hence F is a surjective map.

- 6. Let H be a complex Hilbert space. Let $P: H \to H$ be a linear map such that
 - 1. $P \neq 0$ and $P \neq I$,
 - 2. P(P(x)) = P(x) for all x,
 - 3. $||P(x)||^2 + ||x P(x)||^2 = ||x||^2$ for all x.

Show that ||P|| = 1 = ||I - P||, where I denotes the identity map.

Proof. Note that $P^2 = P \Rightarrow ||P|| = ||P^2|| \le ||P|| ||P|| \Rightarrow 1 \le ||P||$. Since $||P(x)||^2 + ||x - P(x)||^2 = ||x||^2$ for all x, $||P(x)||^2 \le ||x||^2 \Rightarrow ||P|| \le 1$. So ||P|| = 1.

Observe that $(I - P)^2 = I - P - P + P^2 = I - P$. In the above arguments, if we change the role of P by I - P, then ||I - P|| = 1.

7. Let (Ω, \mathcal{A}, P) be a probability space. Let $\{f_n\}_{n\geq 1} \subset L^3(P)$ be a sequence such that $f_n \to f$ for some $f \in L^3(P)$. Show that for any $g \in L^{\frac{3}{2}}(P), \int f_n g \ dP \to \int fg \ dP$.

Proof. Let us consider p = 3 and $q = \frac{3}{2}$. Then $\frac{1}{p} + \frac{1}{q} = 1$. By using the Holder's inequality, for any $g \in L^{\frac{3}{2}}(P)$ we have

$$|\int (f_n - f)g \, dP| \le \int |(f_n - f)g| \, dP \le \left(\int |f_n - f|^p \, dP\right)^{\frac{1}{p}} \left(\int |g|^q \, dP\right)^{\frac{1}{q}} \to 0$$

as $n \to \infty$. Hence for any $g \in L^{\frac{3}{2}}(P), \int f_n g \ dP \to \int fg \ dP$ as $n \to \infty$.

8. Let (X, \mathcal{T}) be a locally compact non-compact space. Show that $C_0(X)$ is a Banach space with the supremum norm.

Proof. If we can show that $C_0(X)$ is a closed subspace of the complete space $(C(X), \|.\|_{\infty})$, then $C_0(X)$ is also a Banach space with the supremum norm. Let f be any element in the closure of $C_0(X)$ in C(X). Then there is a sequence $\{f_n\}$ in $C_0(X)$ such that $\|f_n - f\|_{\infty} \to 0$ as $n \to \infty$. So for given $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that $\|f_n - f\|_{\infty} < \epsilon$ for all $n \ge N$. Since $f_N \in C_0(X)$, there is a compact subset $K \subset X$ such that $|f_N(t)| < \epsilon$ for all $t \notin K$. Hence

$$|f(t)| \le |f(t) - f_N(t)| + |f_N(t)| \le ||f_N - f||_{\infty} + |f_N(t)| < \epsilon + \epsilon$$

for all $t \notin K$. This shows that $f \in C_0(X)$. Thus $C_0(X)$ is a closed subspace of C(X). So it is complete.